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Chaos for the Sierpinski Carpet
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We study the chaotic behavior of the Sierpinski carpet. It is proved that this
dynamical system has a chaotic set whose HausdorfT dimension equals that of
the Sierpinski carpet.
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1. INTRODUCTION

Recently, chaotic dynamical systems on fractals have been studied by
M. Barnsley and D. Simpelaere. Simpelaere(9) studied the recurrence and
return times of orbits of points of a dynamical system, the Sierpinski carpet,
and proved that the Poisson law property holds almost everywhere with
respect to a natural measure defined on this system. Here we study the
chaotic behavior of this dynamical system, and calculate the Hausdorff
dimension of a chaotic set of the Sierpinski carpet.

Li and Yorke(5) originally introduced the notion of chaos for
continuous self-maps of the interval 7=[0,1], and showed that if a
continuous map f: I i—>I has a periodic point with period three, then the
following condition (*) is satisfied:

(*) There exists an uncountable subset C of / such that for any
different points y1 and y2 of C,
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i.e., there exist two increasing sequences {mi} and { k i } of positive integers
such that

The set C is called a chaotic set of f in the sense of Li and Yorke.
In the above theorem, Li and Yorke used the cardial to describe the

size of the chaotic set C of f. The notion of Hausdorff dimension plays an
important role in describing the concept of size of sets. The Hausdorff
dimension is an active research subject in contemporary ergodic theory.
The main aim of the present paper is to show that a dynamical system,
the Sierpinski carpet, has a chaoticity suggested in ref. 13 which is more
complicated than the chaoticity in the sense of Li and Yorke and that the
Sierpinski carpet has a chaotic set whose Hausdorff dimension equals the
Hausdorff dimension of the Sierpinski carpet.

Definition 1. Let X be a topological space and f: X t->X be a map.
Let {p i} he any strictly increasing sequence of positive integers. S C X is
called a chaotic set of f with respect to {pi} if, for any finite subset A C S
and any map F:A\-> X, there is a subsequence {ri} of the sequence {p i}
such that

for all x e A.

Remark 1. If S<= X is a chaotic set of f with respect to { p i } , then S
is a chaotic set of f in the sense of Li and Yorke.

The following theorem has been proved in ref. 15.

Theorem A. Let X be a topological space satisfying the second
axiom of countability, B ( X ) the er-algebra of Borel subsets of X, and let
m be a probability measure on ( X , B ( X ) ) with the property that each
nonempty open set has nonzero measure. Suppose f: X ->X is a trans-
formation which preserves the measure n and is strong-mixing. Then for
any strictly increasing sequence {pi} of positive integers, there is a chaotic
set C c X with respect to { p i } such that for any De B ( X ) , if n(D) >0, then
C n D=O.
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2. THE CHAOTIC MODEL

Given integers m > n and a set

with # ( S ) = r>1, define the fractal set S by

It is clear that S= Ur-1 fk(S), where the fk are affine maps contracting by
a factor of n horizontally and m vertically, i.e., for k which corresponds to
a pair (i, j) e S,

Barnsley(1) called {f1, f2,..., fr} an iterated function system (IFS); S is an
attractor of the IFS.

We also have a continuous surjectivemap O: Sr= {0, 1,..., r— 1 } N ^ > S:

Then there exists a set M e Sr such that:

(1) a(M) a M, where a: Sr i-» Sr is the shift map defined by

(2) O|M is one-to-one.

(3) p(M) = 1 for any product measure p defined by a probability
vector (P0, P 1 , . . . , Pr-1).

So we get a map f: O(M)i->O(M) by

It is easy to see that fO = Of.
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Barnsley(1) also defined a dynamical system on fractals as follows:
A sequence of points {xn}n=0 in S is called an orbit of the random

shift dynamical system associated to the Sierpinski carpet if

for each n e {0, 1,2,...}.

Remark 2. { x n } n = 0 is an orbit of the random shift dynamical sys-
tems associated to the Sierpinski carpet if and only if there exists a point
a = (i1, i2 ,...) e Sr such that xn = O(an(a)) for each n e (0, 1, 2,...}.

Remark 3. If x 0 e O ( M ) , then { x n } n = 0 is an orbit of the random
shift dynamical systems associated to the Sierpinski carpet if and only if
xn+1 =f (x n ) for each n e {0, 1, 2,...}.

Now we state and prove the main result of the present paper.

Theorem 1. Let {pi} be any strictly increasing sequence of positive
integers, then there is a subset W of S such that:

(i) For any finite subset A C W and any map F: A t-» S there is a
subsequence { r i } of the sequence {Pi} such that

for all x e A.

(ii) dimH( W) = dimH(S) = logm(Em-1 t(logn m), where tj is the number
of i such that (i, j) e S.

Proof. Following ref. 7, let S = logm(Em - 1 t ( l o g n m) and let ( x i , yi)r-1

enumerate the elements of S. For i = 0, 1,..., r— 1, let ai be the number of
j such that yi = ji; then

Put bi = aI(logn m-1)/ms, then Er-1Bi=1. By ref. 9, the one-side (b0,b1,...,
br-1 )-shift is strong-mixing, it follows from Theorem A that there is a
chaotic set of a such that for any Borel subset D with m ( D ) > 0, then C n D
=O. Let m* be the outer measure induced from m.

Claim 1. m*(C) = 1.
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It is easy to see that m* is a regular outer measure. If m*(C) < 1, then
there exists a set F e B ( S r ) such that C <=F and m * ( C ) = m ( F ) < 1; then
H(S r \F )>0 and (Sr\F) n C =O. This contradicts Theorem A.

Define the function gk on Sr ,

where l = [ k logn m] as usual. By Lemma 4 of ref. 6, we have that

Let E=C n M n {z e S r : g k ( z ) -^ l }; then m*(E) = 1. Let W= O ( E ) ; the W
is a chaotic set of {S, f}.

Claim 2. d imH(W) = S.
Fix p < d; let

Since m* is a regular outer measure, we have that

So we can pick K such that m*(E*) >0. Set E = min{m*(E K ) , w - b k } .
To a covering C = {Ak(p,q)H Bk} defined in ref. 7, let Nk be the

number of Ak,(p, q) H BK e C with k' = k. If Nk = 0 for some k > K, then
ENkm-bk>m-bk>£. So assume that Nk = 0 for k < k; then for the
elements of C such that (Ak(p, q) H Bk) n Ek = O, we have

where z e (Ak(p, q) H Bk) n Ek and k> K. Since C covers Ek, we have

By Lemma 2 of ref. 7, mb(W) > 0; it follows that dimH(W) > S. On the
other hand, by the main theorem of ref. 7, we have that dimH( W) <
dimH(S) =S. The proof is complete.
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Corollary 1. For the Sierpinski carpet, there is a subset W of S
such that:

(i) For x, y e W, x = y, we have

(ii) dimH(W) = dimH(S) = logm(Em-1)t( logn m)), where tj is the
number of i such that (i, j) e S.
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